首页> 外文OA文献 >Shock Layer Instability near the Newtonian Limit of Hypervelocity Flows
【2h】

Shock Layer Instability near the Newtonian Limit of Hypervelocity Flows

机译:牛顿超高速流动极限附近的激波层不稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The curved bow shock in hypersonic flow over a blunt body generates a shear layer with smoothly distributed vorticity. The vorticity magnitude is approximately proportional to the density ratio across the shock, which may be very large in hypervelocity flow, making the shear layer unstable. A computational study of the instability reveals that two distinct nonlinear growth mechanisms occur in such flows: First, the vortical structures formed in the layer move supersonically with respect to the flow beneath them and form shock waves that reflect from the body and reinforce the structures. Second, the structures deform the bow shock, forming triple points from which shear layers issue that feed the main shear layer. Significant differences exist between plane and axisymmetric flow. Particularly rapid growth is observed for free-stream disturbances with the wavelength approximately equal to the nose radius. The computational study indicates that the critical normal shock density ratio for which disturbances grow to large amplitudes within a few nose radii is approximately 14. This served as a guide to the design of a physical experiment in which a spherical projectile moves at high speed through propane or carbon dioxide gas. The experiment confirms the approximate value of the critical density ratio, as well as the features of the computed flows. Comparisons of calculations of perfect gas flows over a sphere with shadowgraphs of the projectile show very good agreement. The Newtonian theory of hypersonic flow, which applies at high density ratio, makes the assumption that the flow remains smooth. The results show that high density ratio also causes this assumption to fail.
机译:高超声速流过钝体时弯曲的弓形激波会产生剪切层,涡流分布平稳。涡度大小大致与整个冲击的密度比成正比,在超高速流动中,密度比可能很大,从而使剪切层不稳定。对不稳定性的计算研究表明,在这种流动中发生了两种截然不同的非线性增长机制:首先,层中形成的涡旋结构相对于其下方的流动以超音速运动,并形成了从人体反射并增强结构的冲击波。其次,结构使弓形冲击变形,形成三点,从中产生剪切层,并向主剪切层供料。平面流动和轴对称流动之间存在显着差异。对于自由流干扰,观察到特别快速的增长,其波长近似等于鼻半径。计算研究表明,扰动在几个机头半径内增大到较大幅度的临界法向冲击密度比约为14。这为物理实验的设计提供了指导,在该实验中球形弹丸通过丙烷高速运动。或二氧化碳气体。实验确认了临界密度比的近似值以及计算出的流量的特征。用弹丸的阴影图对球体上完美气体流动的计算比较显示出很好的一致性。牛顿高超音速流动理论适用于高密度比,它假设流动保持平稳。结果表明,高密度比也导致该假设失败。

著录项

  • 作者

    Hornung, H. G.; Lemieux, P.;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号